These Notes are to SUPPLEMENT the Text, They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests! To get the most information, READ THE CHAPTER prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test! The author is not responsible for typos in these notes.

Chapter 3, Chemical Reactions

Start Studying these tables early
Figure 3.10 Guidelines to predict the solubility of ionic compounds
Table 3.1 Common Acids and Basis
Table 3.2 Gas-Forming Reactions
Table 3.3 Common Oxidizing \& Reducing Agents
Metal Sulfides are black and metal sulfides come from the center of the earth. Sulfides are insoluble in water so they form a black mass in the deep ocean floor cracks.

Chemical Reactions are the heart of Chemistry. This chapter is an introduction to symbols and chemical reactions.

3.1 Intro to Chemical Equations

In the late 1770's Oxygen was discovered by Joseph Priestley coming from heating mercury (II) oxide

$$
2 \mathrm{HgO}_{(\mathrm{s})}--\Delta \rightarrow 2 \mathrm{Hg}_{(\mathrm{l})}+\mathrm{O} 2_{(\mathrm{g})}
$$

They also determined that Oxygen also comes from water and burning involved a reaction with Oxygen. The heat generated by a guinea pig exhaling Carbon Dioxide $\left(\mathrm{CO}_{2}\right)$ is the same amount as produced by burning Carbon to Carbon Dioxide. Respiration is slow combustion

A Balanced Chemical Equation

$$
\mathrm{P}_{4(\mathrm{~s})}+6 \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{PCl}_{3(\mathrm{l})}
$$

In a balanced Chemical Equation you have the same number of individual elements on the left and right side of the reaction arrow.

$$
\text { Reactants are on the left of the arrow } \quad \text { Products are on the right of the arrow }
$$

Physical States are represented by: (s) = Solid, (g) = Gas, (l) = Liquid, (aq) = aqueous
A Solid can sometimes be shown as \downarrow and a gas as \uparrow
A substance dissolved in water is an Aqueous Solution (aq)
Law of Conservation of Matter = matter can neither be created or destroyed. Atoms are conserved in Chemical Reactions. The same elements and number of elements on the left side (the reactants) equals those on the right side (the products).

If the total weight of 100.0 g of reactants, there will be a total weight of 100.0 g of products
For the reaction above, there are 4 atoms of P on the left and right.
There are $6 * 2$ or 12 atoms of Cl on the left and $4^{*} 3$ atoms or 12 on the right.
The number 6 before the Cl_{2} and 4 before the PCl_{3} are called Stoichiometric Coefficients.

Stoichiometric Coefficients are the coefficients used to balance an equation
$\mathrm{P}_{4(\mathrm{~s})}+6 \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NaCl}_{3(\mathrm{l})}$
$2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}(\mathrm{~s})$
$2 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{Br}_{2}{ }_{(\mathrm{l})} \rightarrow \mathrm{Al}_{2} \mathrm{Br}_{6}(\mathrm{~s})$

THIS CANNONT HAPPEN IN CHEMISTRY, Why?
2, 3 and 2 are the Stoichiometric Coefficients
What are the Stoichiometric Coefficients?

If we start with 8000 atoms of Al , how many molecules of Br_{2} are required to consume all of the Al ?
8000 atoms of $\mathrm{Al}{ }^{*} 3 \mathrm{Br}_{2} / 2 \mathrm{Al}=8000$ * $3 / 2$ atoms (really molecules) of Br_{2}

Balancing Equations

YOU must have the same number of atoms of each element on each side of the equation.
You CANNOT change the subscripts as this changes the identity of the substance
Changing CO_{2} to CO changes from Carbon Dioxide to Carbon Monoxide
Chemical equations are balanced using stoichiometric coefficients.
Write the balanced equation:
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad$ UNBALANCED EQUATION
Balance the Carbons, then the Hydrogen, then the Oxygen, verify all is correct
$\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad$ Carbon Balanced
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad$ Hydrogen Balanced
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad$ BALANCED EQUATION

Use The Ping-Pong Method of Balancing a Chemical Equation

$\mathrm{FeCl}_{3}+\mathrm{AgNO}_{3} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{AgCl}$

1. Start on the left side - pic one cation. Pick one that is large or strange - take Fe
2. There is one $\mathbf{F e}$ on the left side, there is one $\mathbf{F e}$ on the right side, Fe is balanced
3. Look at the $\mathbf{F e}$ on the right side. It is attached to Nitrate $-\mathbf{N O}_{3}$. Balance this next.
4. There are $3 \mathbf{N O}_{\mathbf{3}}$ on the right side, but only 1 on the left side
5. Make it so there are $3 \mathbf{N O}_{\mathbf{3}}$ on the left side:

$$
\mathrm{FeCl}_{3}+\mathbf{3} \mathrm{AgNO}_{\mathbf{3}} \rightarrow \mathrm{Fe}\left(\mathbf{N O}_{\mathbf{3}}\right)_{\mathbf{3}}+\mathrm{AgCl}
$$

6. There are now $3 \mathbf{N O}_{\mathbf{3}}$ on both the left and right side
7. Attached to the $\mathbf{N O}_{\mathbf{3}}$ on the left side are $3 \mathbf{A g}$.
8. There is only $1 \mathbf{A g}$ on the right side. Make it 3 !

$$
\mathrm{FeCl}_{3}+\boldsymbol{3} \mathbf{A g N O} O_{3} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+\boldsymbol{3} \mathbf{A g C l}
$$

9. Connected to the $\mathbf{A g}$ on the right is $\mathbf{C l}$. There are $3 \mathbf{C l}$ on the right
10. There are also $3 \mathbf{C l}$ on the left
11. THE EQUATION IS NOW BALANCED! But you should verify it by counting the atoms on each side of the equation!
Write a Balanced Chemical Equation for the following:

$$
\begin{array}{ll}
\mathrm{Fe}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{Fe}_{2} \mathrm{SO}_{4} & 2 \mathrm{Bi}^{3+}+3 \mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{Be}_{2}\left(\mathrm{SO}_{4}\right)_{3} \\
\mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{S}^{2-} & \mathrm{Ca}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{Ca}_{2} \mathrm{SO}_{4}
\end{array}
$$

Metals and nonmetals react with Oxygen to yield Oxides: (Balance the following)

$$
\begin{aligned}
& \mathrm{Fe}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \\
& \mathrm{P}_{4(\mathrm{~s})}+\mathrm{O}_{2(\mathrm{~g})}->\mathrm{P}_{4} \mathrm{O}_{10(\mathrm{~s})}
\end{aligned} \quad \mathrm{S}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})}
$$

Burning a hydrocarbon (contains C and H) yields CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ and energy ($\boldsymbol{\Delta}=$ heat)
Example 3.1 Write the balanced equation for the combustion of Ammonia Gas (NH_{3}) to give water vapour and Nitrogen Monoxide gas (You should be able to do this on your own by now).

Combustion is burning with oxygen and evolves heat. Products are all Oxides

$$
\text { Octane in Gas } \left.\quad \mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}\right)+\Delta
$$

When a hydrocarbon (contains only $\mathrm{H} \& \mathrm{C}$) is combusted he products are always $\mathrm{CO}_{2}, \mathrm{HOH}$ and energy ($\Delta=$ heat)

Balance:

$$
\begin{array}{ll}
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2(\mathrm{~g})} & \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+\mathrm{O}_{2(\mathrm{~g})} & \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} & \rightarrow \mathrm{PbO}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})}
\end{array}
$$

Chemical Equilibrium: Chemical Reactions are [may be as you will learn in 1046] reversible.
Stalagmites are Calcium Carbonate:
$\mathrm{CaCO}_{3(\mathrm{~s})}+\mathrm{CO}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq}) \quad$ Water, with dissolved CO 2 from the air, goes through the rock dissolving $\mathrm{CaCO}_{3(\mathrm{~s})}$
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2(\text { aq })} \rightarrow \mathrm{CaCO}_{3(\mathrm{~s})}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad$ Calcium Bicarbonate gives up water and CO_{2} and Forms Stalagmite - reverse of above reaction
THUS $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2(\mathrm{aq})} \leftarrow \rightarrow \mathrm{CaCO}_{3(\mathrm{~s})}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}$ (l) \quad Is a reversible reaction Adding CO2 forces the reverse of this reaction

$$
\overrightarrow{\text { Xcs } \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{CO}_{3} \quad \leftarrow \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}-1 .}
$$

Fertilizer is made from Ammonia. Ammonia is made from Hydrogen and Nitrogen:

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})} \leftarrow \rightarrow \mathrm{NH}_{3(\mathrm{~g})} \quad \text { You Balance this equation }
$$

At time = infinity, the system has reached Chemical Equilibrium. No further Macroscopic change is observed. Also called Dynamic Equilibrium = the rate of the forward reaction equals the rate of the reverse reaction. Chemical Reactions always proceed spontaneously toward equilibrium

Product favored reactions: reactants are completely or largely converted to products when at equilibrium. Combustion is an example of Product favored reactions.

Reactant favored reaction: Only a small amount of products are formed at equilibrium The ionization of Acetic Acid in water solution only proceeds to a small percent; this is why Acetic Acid is a weak acid:

3.4 Aqueous Solutions. Most General Chem reactions are carried out in water solutions.

Solution: a homogeneous mixture of two or more elements
Solvent: the medium in which the solute is dissolved in, usually the item in the largest amount
Solute: the item in the smaller amount
Aqueous Solutions: solutions in which water is the solvent. Water is good a dissolving ionic compounds because water is polar, has a positive and a negative end. Ionic compounds are usually polar - like dissolves like.

Electrolysis: We have two charged electrodes, one + and one -. Positively charged ions (cations) are attracted to the negative electrode. Negatively charged ions (anions) are attracted to the positively charged electrode and electricity flows!

Electrodes: conductor of electricity
Electrolytes: compounds whose aqueous solutions conduct electricity.
Strong Electrolytes: Substances whose solutions are good electrical conductors as they are completely ionized.

$$
\mathrm{NaCl}_{(\mathrm{s})} \rightarrow \mathrm{H}_{2} \mathrm{O} / \mathrm{NaCl} \text { Solution } \rightarrow \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}
$$

Dissolving 1 mole of NaCl in water gives one mole of Na^{+}and 1 mole of Cl^{-}. It is 100% dissociated Dissolving 1 mole of BaCl 2 in water gives one mole of Ba^{2+} and 2 moles of Cl^{-}

$$
\mathrm{BaCl}_{2(\mathrm{~s})} \rightarrow \mathrm{H} 2 \mathrm{O} / \mathrm{BaCl}_{2} \text { Solution } \rightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathbf{C l}^{-}(\mathbf{a q})
$$

Weak Electrolytes: Compounds dissolved in water and only a small fraction of the molecules form ions, such as Acetic Acid

Non-Electrolytes: Compounds whose aqueous solutions do not conduct electricity:
Ethanol
$\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{OH}$
(l) $\rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{OH}(\mathrm{aq})$

Experiment to show the conduction of electricity. Put 2 electrodes into water and attach to a battery and to a light bulb. Bulb will light if electricity is flowing.

Note: even though acids (HCl) and bases (NaOH) may seem like an ionic compound, this book classifies them as Molecular Compounds.

Solubility of Ionic Compounds in Water MEMORIZE THIS CHART. See also end of these notes for a different approach to solubility.

SOLUBLE COMPOUNDS	
Almost all salts of $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}$	
Salts of nitrate, NO_{3}^{-} chlorate, $\mathrm{ClO}_{3}{ }^{-}$ perchlorate, ClO_{4}^{-} acetate, $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$	
	EXCEPTIONS
Almost all salts of $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$	Halides of $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+}$
Salts containing F^{-}	Fluorides of $\mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}$
Salts of sulfate, $\mathrm{SO}_{4}{ }^{2-}$	Sulfates of $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Ag}^{+}$
INSOLUBLE COMPOUNDS	EXCEPTIONS
Most salts of carbonate, $\mathrm{CO}_{3}{ }^{2-}$ phosphate, $\mathrm{PO}_{4}{ }^{3-}$ oxalate, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ chromate, $\mathrm{CrO}_{4}{ }^{2-}$ sulfide, S^{2-}	Salts of NH_{4}^{+}and the alkali metal cations
Most metal hydroxides and oxides	Alkali metal hydroxides and $\mathrm{Ba}(\mathrm{OH})_{2}$ and $\mathrm{Sr}(\mathrm{OH})_{2}$

Soluble or Insoluble

Soluble are materials that are soluble beyond a certain extent
Insoluble are materials that do no dissolve to that extent
Predict the solubility of:

KCl	MgCO_{3}	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
LiNO_{3}	CaCl_{2}	CuO	$\mathrm{NaCH}_{3} \mathrm{CO}_{2}$ (sodium acetate)
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	CuS	$\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	$\mathrm{Mg}(\mathrm{OH})_{2}$

There are Four Categories of Reactions in Aqueous Solutions

Precipitation, Acid-Base, Gas forming, REDOX

3.5 Precipitation Reactions

Exchange Reactions - double displacement - the ions exchange partners

A Precipitation reaction produces a water insoluble solid product known as a precipitate

$$
\mathrm{AgNO}_{3(\mathrm{aq})}+\mathrm{KCl}_{(\mathrm{ag})} \rightarrow \mathrm{AgCl} \downarrow_{(\mathrm{s})}+\mathrm{KNO}_{3(\mathrm{aq})}
$$

Predicting Outcome of a precipitation reaction:
If the Reactants are insoluble - there will be no reaction
If the Products are insoluble - there will be a reaction and a precipitate.
If the Reactants and Products are soluble, there probably will not be a reaction, just a mixture of ions.

$$
\begin{array}{lll}
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) & \rightarrow & \mathrm{PbCrO}_{4} \downarrow_{(\mathrm{s}}+2 \mathrm{KNO}_{3}(\mathrm{aq}) \\
\mathrm{Pb}^{2+} \mathrm{aqq}+2 \mathrm{NO}_{3}^{-}(\mathrm{aq}) & \rightarrow & \mathrm{PbCrO}_{4} \downarrow_{(\mathrm{s}} \text { Insoluble } \\
2 \mathrm{~K}^{+}(\mathrm{aq})+\mathrm{CrO}_{4}^{2-}(\mathrm{aq}) & \rightarrow & 2 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})
\end{array}
$$

Students do these:

$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{(\mathrm{aq})}$	\rightarrow	You figure it out
$\mathrm{FeCl}_{2 \text { (aq) }}+\mathrm{NaOH}_{(\mathrm{aq})}$	\rightarrow	You figure it out

Example 3.3: Is there a ppt? Write the balanced equation:
An aq solution of Potassium Chromate and Silver Nitrate?
Sodium Carbonate and Copper (II) Chloride
Potassium Carbonate and Sodium Nitrate
Nickel (II) Chloride and Potassium Hydroxide

Ionic Equations

$\mathrm{AgNO}_{3 \text { (aq) }}+\mathrm{KCl}_{\text {(ag) }} \rightarrow \mathrm{AgCl} \downarrow_{(\mathrm{s})}+\mathrm{KNO}_{3 \text { (aq) }}$
Complete Ionic Equation - break all SOLUBLE molecules down to their ions:

$$
\mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{NO}_{3}^{-}{ }_{(\mathrm{aq})}+\mathrm{K}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}{ }_{(\mathrm{ag})} \rightarrow \mathrm{AgCl} \downarrow_{(\mathrm{s})}+\mathrm{K}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

Spectator Ion is the same ion on both sides of the equation

$$
\mathrm{Ag}^{+}(\mathrm{aq})+\mathbf{N O}_{3^{-}}^{(\mathrm{aq})}+\underline{\mathrm{K}}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{ag})}^{-} \rightarrow \mathrm{AgCl} \downarrow_{(\mathrm{s})}+\underline{\mathrm{K}}_{(\mathrm{aq})}^{+}+\underline{\mathbf{N O}}_{3_{-}^{-}}{ }_{(\mathrm{aq})}
$$

Net Ionic Equation - remove the Spectator Ions - remember there must be charge balance and element/polyatomic balance

$$
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{ag}) \rightarrow \mathrm{AgCl} \downarrow_{(\mathrm{s})}
$$

Student Write the Complete Ionic Equation and determine the Net Ionic Equation for:
The strong acid/base reaction of Hydrochloric Acid and Sodium Hydroxide
The reaction of Barium Chloride and Sodium Sulfate
The reaction of Calcium Chloride and Sodium Phosphate
The reaction of Silver Nitrate and Sodium Carbonate

3.6 Acid / Base

Acids: \quad Produce CO_{2} bubbles when added to a metal carbonate CaCO_{3}
React with metals to produce H_{2} gas
Taste Sour (vinegar, citric acid) - Don't ever do a taste test for an acid!
Turn blue litmus to red

Arrhenius Definition

Acid when dissolved in waer, increases the H^{+}or Hydronium ion concentration $\mathrm{HCl}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow{\underline{\mathbf{H}_{3} \mathbf{O}^{+}}{ }_{(a q)}+\mathrm{Cl}-(\mathrm{aq})}^{(}$

Base when dissolved in water, increases the OH - concentration
$\mathrm{NaOH}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+{\underline{\mathbf{O H}^{-}(\mathbf{a q})}}^{(}$

Reaction of an acid and a base products a salt and water

$\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}(\mathrm{s}) \rightarrow \mathrm{NaCl}+\mathrm{H}-\mathrm{OH}$
Strong Acid: Completely ionize in water, eg HCl
Weak Acid: Incompletely ionize in water, eg H2CO3 Carbonic Acid
Strong Base: Water soluble compounds that contain hydroxide: $\mathrm{NaOH}, \mathrm{KOH}$
Weak Base: Water soluble hydroxide that partially ionizes: NH 4 OH

Common Acids and Bases: Yes, you need to memorize these

Strong Acids (Strong Electrolytes)*		Soluble Strong Bases
HCl	Hydrochloric acid	LiOH Lithium hydroxide
HBr	Hydrobromic acid	NaOH Sodium hydroxide
HI	Hydroiodic acid	KOH Potassium hydroxide
HNO_{3}	Nitric acid	$\mathrm{Ba}(\mathrm{OH})_{2} \quad \ldots$ Barium hydroxide
HClO_{4}	Perchloric acid	$\mathrm{Sr}(\mathrm{OH})_{2} \quad$ Strontium hydroxide
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfuric acid	
Weak Ac	eak Electrolytes)*	Weak Base (Weak Electrolyte)*
HF	Hydrofluoric acid	$\mathrm{NH}_{3} \ldots \ldots . .$. Ammonia
$\mathrm{H}_{3} \mathrm{PO}_{4}$	Phosphoric acid	
$\mathrm{H}_{2} \mathrm{CO}_{3}$	Carbonic acid	
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	Acetic acid	
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	Oxalic acid	
$\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$	Tartaric acid	
$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$	Citric acid	
$\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$	Aspirin	

Bronsted-Lowry Definition Acid is a proton donor
Base is a proton acceptor
Acid Base reaction involves the transfer of a proton from an acid to a base to form a new base and a new acid, the equilibrium favors the weaker acid and base:

Strong Acid - HClCompletely Ionized
$\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftarrow \rightarrow \quad \mathbf{H 3}_{3} \mathbf{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})} \quad \mathrm{HCl}$ is a strong acid, this reaction goes 100% Hydronium Ion
Weak Acid - Acetic Acid Partially Ionized
$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftarrow \rightarrow \quad \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\text {aq) }}$ Reaction only goes abour 1% Acetic Acid Acetate Ion
Note: $\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }}$ is a stronger acid than $\mathrm{CH}_{3} \mathrm{COOH}$, so the reaction favors the weaker or this is Reactant Favored (to the left)
Diprotic Acid: can give up two H^{+}, eg: Sulfuric Acid

1. $\mathrm{H}_{2} \mathrm{SO}_{4}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftarrow \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{HSO}_{4}{ }^{-}{ }^{(\mathrm{aq})} \quad$ Reaction goes 100%
2. $\mathrm{HSO}_{4^{-}}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftarrow \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\underset{\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}^{\text {Hydrogen Sulfate Ion }} \quad \text { Reaction goes }<1 \%}{ }$

Weak Base: reacts with water to produce $\mathrm{OH}-$, but at less than 100\%, e.g.Ammonia
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftarrow \rightarrow \mathrm{NH}_{4}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
Amphiprotic - function as an acid or a base (Water is amphoteric / amphiprotic)
Is a Base see Diprotic Acid acid above - water accepts a proton
Is an Acid see Weak Base above - water donates a proton
Exampe 3.5 Discuss reacting cyanide with a proton, is it a Bronsted Acid or Base? React phosphoric acid and water to form dihydrogen phosphate ion

Reactions of Acid \& Base:

Acids and Bases react to form water and a salt.
What is the complete ionic equation? What is the net ionic equation?
$\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{NaCl}_{(\mathrm{aq})}$
Sulfuric Acid is produced from sulfur:

$$
\begin{array}{lll}
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2(\mathrm{~g})} & \rightarrow \mathrm{SO}_{2(\mathrm{~g})} & 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{SO}_{3(\mathrm{~g})} \\
\mathrm{SO}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} & \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} &
\end{array}
$$

Sulfuric Acid is a colorless syrupy liquid, den $1.84 \mathrm{~g} / \mathrm{ml}$
Less expensive to produce than other acids
Reacts with many organic compounds
Reacts with Lime (Calcium Oxide CaO) to produce CaSO_{4} (Calcium Sulfate) used in wall board
Used to produce fertilizer, pigments, explosive, pulp and paper, detergents and in storage batteries.

Neutralization Reactions are reactions between strong acids and strong bases which produce water and a salt:

$$
\begin{aligned}
& \mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{\text {(l) }}+\quad \mathrm{NaNO}_{3}(\mathrm{aq}) \\
& \text { Acid Base Water Salt }
\end{aligned}
$$

Remove the spectator ions and you get this Net Ionic Equation

$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{H} 2 \mathrm{O}(\mathrm{l})$
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+}$
| $\quad \mathrm{NaOH}$ is a strong base
Acidic Acid (vinegar) is a weak acid,
Oxides of Non Metals and Metals have no H atoms, but react with water to produce $\mathrm{H}_{3} \mathrm{O}^{+}$ Acidic Oxides are oxides that react with water to produce the Hydronium Ion
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \leftarrow \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})} \quad$ Carbonic Acid
$\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftarrow \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{HCO}_{3}^{-}{ }_{(\mathrm{aq})} \quad 1^{\text {st }}$ Proton Ionization
$\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftarrow \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \quad 2^{\text {nd }}$ Proton (Di Protic)
Rainwater contains dissolved CO 2 , thus is it slightly acidic
$2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \quad$ Sulfuric Acid
Basic Oxides are oxides of metals that give basic aqueous solutions

$$
\mathrm{CaO}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}
$$

3.7 Gas Forming Reactions - See Table 3.2

Table 3.2 Gas-Forming Reactions

Metal carbonate or hydrogen carbonate + acid \rightarrow metal salt $+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
$\mathrm{NaHCO}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
Metal sulfide + acid \rightarrow metal salt $+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
$\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
Metal sulfite + acid \rightarrow metal salt $+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
$\mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
Ammonium salt + strong base \rightarrow metal salt $+\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell)$

All metal carbonates $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ and bicarbonates $\left(\mathrm{HCO}_{3}{ }^{-}\right)$react with acids to produce carbonic acid which can decompose to carbon dioxide:

$$
\mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}
$$

$$
\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2} \uparrow_{(\mathrm{g})}
$$

Overall: $\quad \mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2} \uparrow_{(\mathrm{g})}$
Calcium Carbonate $\left(\mathrm{CaCO}_{3}(\mathrm{~s})\right.$) is what makes water hard and leaves white marks on cars and other things that hard water dries on. It will react with vinegar (dilute acetic acid) to form soluble acetate:

$$
\mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2} \uparrow_{(\mathrm{g})}
$$

How does bread rise and have holes - by the formation of carbon dioxide from the bicarbonate of soda (baking soda) which reacts with the small amount of tartaric acid also present in baking soda:

$$
\begin{array}{lll}
\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6(\mathrm{aq})} \\
\text { Tartaric Acid }
\end{array}+\begin{aligned}
& \mathrm{HCO}_{3}^{-}(\mathrm{aq}) \\
& \text { Bicarbonate Ion }
\end{aligned} \rightarrow \begin{aligned}
& \mathrm{HC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \text { Hydrogen Tartrate Ion }
\end{aligned}+\mathrm{CO}_{2(\mathrm{~g})}
$$

Example 3.7 Write the balanced equation for the reaction of nickel (II) carbonate with sulfuric acid.

3.8 REDOX - Oxidation Reduction Reactions

Oxidation: Loss of electrons Reduction: Gain of electrons

Oxidation Numbers (ON) are the charge an element has or appears to have:

1. Pure Element Oxidation Number $=0$
2. Monoatomic ions OxNum
3. Halogens
4. Oxygen is -2 , oxide

Peroxide $=-1$
5. H is +1 , hydride is $\mathbf{- 1}$
$=$ charge for that ion
$=-1$
$=-1$
$=+1$
$=-1$

ON for Cu is zero
ON for Mg^{2+} is +2
F - is -1
$\mathrm{H}_{2} \mathrm{O}$, Oxygen is -2
$\mathrm{H}_{2} \mathrm{O}_{2}$, Oxygen is -1
$\mathrm{H}_{2} \mathrm{O}$, Hydrogen is +1
NaH , Hydrogen is -1

The algebraic sum of the OxNum for a molecule must equal Zero.
Oxidation is a Loss of Electrons Increase in Oxidation Number
Reduction is a Gain of Electrons Reduction in Oxidation Number
Oxidation is a process in which oxygen is added to another substance
Oxidation Agent - a compound that oxidizes another compound, the oxidation agent is reduced
Reducing Agent - a compound that reduces another compound, the reducing agent is oxidized
$\mid<-\quad$ Oxidation -> Iron goes from Zero to +2
$\mathbf{F e}+\underset{\mid<-}{\mathbf{C u}+\boldsymbol{R e d u c t i o n ~}->} \underset{\mid}{\mathbf{F e}^{+2}}+\quad \underset{\mid}{\text { Ru }} \quad$ Copper (II) goes from +2 to Zero

Mg combines with oxygen and is oxidized.	Ag^{+}ions accept electrons from Cu and are reduced to $\mathrm{Ag} . \mathrm{Ag}^{+}$is the oxidizing agent. $\begin{gathered} \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{~s}) \\ 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s}) \longrightarrow 2 \mathrm{Ag}(\mathrm{~s})+\underset{\uparrow}{\mathrm{Cu}^{2+}}(\mathrm{aq}) \end{gathered}$ Cu donates electrons to Ag^{+}and is oxidized to Cu^{2+} Cu is the reducing agent. $\mathrm{Cu}(\mathrm{~s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$

Nitric Acid $\left(\mathrm{HNO}_{3}\right)$ is a strong oxidizing agent in water dissociates to H^{+}and $\mathrm{NO}_{3}{ }^{-}$

***** The easiest way to spot a REDOX Reaction is there is a PURE ELEMENT on one side of the equation.

Example 3.8 Determine the oxidation number for: Aluminum Oxide, Phosphoric Acid, Sulfur in Sulfate Ion, each Cr in Dichromate ion.

Recognizing REDOX Reactions

Table 3.3 Common Oxidizing and Reducing Agents

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
O_{2}, oxygen	0^{2-}, oxide ion or O combined in $\mathrm{H}_{2} \mathrm{O}$ or other molecule	H_{2}, hydrogen	$\mathrm{H}^{+}(\mathrm{aq})$, hydrogen ion or H combined in $\mathrm{H}_{2} \mathrm{O}$ or other molecule
Halogen, $\mathrm{F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2} \text {, or } \mathrm{I}_{2}$	$\begin{aligned} & \text { Halide ion, } \mathrm{F}^{-}, \mathrm{Cl}^{-} \text {, } \\ & \mathrm{Br}^{-} \text {, or } \mathrm{I}^{-} \end{aligned}$	M, metals such as $\mathrm{Na}, \mathrm{K}, \mathrm{Fe}$, and Al	M^{n+}, metal ions such as $\mathrm{Na}^{+}, \mathrm{K}^{+}$, Fe^{2+} or Fe^{3+}, and Al^{3+}
HNO_{3}, nitric acid	Nitrogen oxides* such as NO and NO_{2}	C, carbon (used to reduce metal oxides)	CO and CO_{2}
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ dichromate ion	Cr^{3+}, chromium(III) ion (in acid solution)		
$\mathrm{MnO}_{4}{ }^{-}$, permanganate ion	Mn^{2+}, manganese(II) ion (in acid solution)		

*NO is produced with dilute HNO_{3}, whereas NO_{2} is a product of concentrated acid.

1. Determine the oxidation number and see if it changes in a reaction
2. If there is a "Pure Element" on either side of the arrow, it is a Redox
3. If any of the above are involved, it is a Redox

Table 3.4 Recognizing Oxidation-Reduction Reactions

	Oxidation	Reduction
In terms of oxidation number	Increase in oxidation number of an atom	Decrease in oxidation number of an atom
In terms of electrons	Loss of electrons by an atom	Gain of electrons by an atom
In terms of oxygen	Gain of one or more 0 atoms	Loss of one or more 0 atoms

Metals usually loose electrons in a chemical reaction (except for Thermite below)
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{s}) \longrightarrow 2 \mathrm{Fe}(\ell)+2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$

oxidizing
agent

agent

Thermite Reaction gives off lots of heat

Reactions in Aqueous Solutions

Precipitation, Acid Base, Gas Forming are EXCHANGE REACTIONS
Precipitation Reactions: Reactant ions form an insoluble product
Overall Reaction:
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KI}_{(\mathrm{aq})} \rightarrow \mathrm{PbI}_{2} \downarrow_{(\mathrm{s})}+2 \mathrm{KNO}_{3}(\mathrm{aq})$
Net Ionic Equation
$\mathrm{Pb}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{I}^{-} \rightarrow \mathrm{PbI} 2 \downarrow_{(\mathrm{s})}$
Acid-Base Reactions:
Reaction of a strong acid and a strong base usually results in water and a salt products
Overall Reaction: $\quad \mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{KOH}_{(\mathrm{aq})} \rightarrow \mathrm{H}-\mathrm{OH}(\mathrm{l})+\mathrm{KNO}_{3(\mathrm{aq})}$
Net Ionic Equation

$$
\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{H}_{-\mathrm{OH}_{(\mathrm{l})}}
$$

Reaction of a weak acid and a strong base
Overall Reaction:

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{Na}+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}-\mathrm{OH}_{(\mathrm{l})}
$$

Net Ionic Equation

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}-\mathrm{OH}_{(\mathrm{l})}
$$

Gas-Forming Reaction: Usually a metal carbonate and an acid
Overall Reaction
$\mathrm{CuCO}_{3}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}-\mathrm{OH}(\mathrm{l})$
Net Ionic Equation CuCO_{3} (s) $^{(\mathrm{s}}+2 \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}-\mathrm{OH}(\mathrm{l})$

Alka-Seltzer and water:

$$
\begin{array}{|l}
\begin{array}{c}
\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}(\mathrm{aq}) \\
\text { citric acid }
\end{array} \\
\begin{array}{c}
\text { hydrogen carbonate ion } \\
\mathrm{H}_{2}{ }^{-}(\mathrm{aq}) \\
\text { dihydrogen citrate ion }
\end{array}
\end{array}
$$

REDOX Reaction: These are NOT exchange reactions, but involve electron transfer

Overall Equation
Net Ionic Equation

$$
\mathrm{Cu} \downarrow_{(\mathrm{s})}+2 \mathrm{AgNO}_{3(\mathrm{aq})} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{Ag} \downarrow_{(\mathrm{s})}
$$

$$
\mathrm{Cu} \downarrow_{(\mathrm{s})}+2 \mathrm{Ag}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag} \downarrow_{(\mathrm{s}}
$$

From my other Lecture Notes (Different Text Book):

Solubility - ability do dissolve in water. Solubility Rules for Ionic Compounds [Table 4.2]
\# \quad Applies to $\quad \underline{\text { Statement }}$ Exceptions

1. $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}$
2. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}, \mathrm{NO}_{3}{ }^{-}$
3. $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
4. $\mathrm{SO}_{4}{ }^{-2}$

Group 1A and Ammonium cpds are soluble
Acetates \& Nitrates are soluble
5. $\mathrm{CO}_{3}{ }^{-2}$
6. $\mathrm{PO}_{4}{ }^{-3}$
7. S^{-2}
8. OH^{-}

Most Chloride, Bromide \& Iodides are soluble
$\mathrm{AgX}, \mathrm{Hg}_{2} \mathrm{X}_{2}, \mathrm{PbX} 2$ $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$
Most Sulfates are soluble $\mathrm{CaSO}_{4}, \mathrm{SrSO}_{4}, \mathrm{BaSO}_{4}$ $\mathrm{Ag}_{2} \mathrm{SO}_{4}, \mathrm{Hg}_{2} \mathrm{SO}_{4}, \mathrm{PbSO}_{4}$

Most carbonates are INSOLUBLE
Grp 1A, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
Most phosphates are INSOLUBLE
$\operatorname{Grp} 1 \mathrm{~A},\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
Most sulfides are INSOLUBLE
Grp 1A, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
Most hydroxides are INSOLUBLE
Grp $1 \mathrm{~A}, \mathrm{Ca}(\mathrm{OH})_{2}$, $\mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{NH}_{4} \mathrm{OH}$
Compounds that dissolve in water are soluble.
Compounds that dissolve only a little are INSOLUBLE
Soluble compounds are Electrolytes or Non-Electrolytes
Electrolytes can be Strong or Weak
Non-Electrolytes form non electrical conducting solutions.

Common Acids and Bases Table 4.2

Name		Formulae
Acid	Acetic Acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
	Acetylsalicylic Acid	$\mathrm{HCC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$
	Ascorbic Acid	$\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$
	Citric Acid	$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$
	Hydrochloric Acid	HCl
	Sulfuric Acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$
Base	Ammonia	$\mathrm{NH}_{3}\left[\mathrm{NH}_{4} \mathrm{OH}\right]$
	Calcium Hydroxide	$\mathrm{Ca}(\mathrm{OH})_{2}$
	Magnesium Hydroxide	$\mathrm{Mg}(\mathrm{OH})_{2}$
	Sodium Hydroxide	NaOH

Remarks

Vinegar
Aspirin
Vitamin C
In Lemon Juice
Stomach Acid
Battery Acid
Water solution is a household cleaner
Lime use in construction mortar
Mild of magnesia - antacid
Drain and oven cleaner
3. Oxidation Reduction Reactions [Redox] are reactions that involve transfer of electrons form one species to another or in which the oxidation number changes.

An Iron nail in Copper (II) Sulfate: $\quad \mathrm{Fe}+\mathrm{CuSO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Cu}$
The Net Ionic is

$\mathrm{Fe}+\mathrm{Cu}^{+2}$	$\rightarrow \mathrm{Fe}^{+2}+\mathrm{Cu}$
Fe^{o}	\rightarrow
$\mathrm{Cu}^{+2}+2 \mathrm{e}^{-}$	$\rightarrow \mathrm{Cu}^{+2}$

Oxidation Number is the actual charge of the atom if it exists as a monoatomic ion - or hypothetical charge.
The Oxidation Number: Rules 4 Assigning Oxidation Numbers - Table 4.5

1. an atom / element is ZERO. $\mathrm{Na}=$ Metallic Sodium $=0$
2. of an atom that exists in a compound as a monoatomic ion equals the charge on that ion.

$$
\mathrm{NaCl} \mathrm{Na}=+1, \mathrm{Cl}=-1
$$

3. Oxygen in a compound has an Oxidation Number of -2. e.g. In $\mathrm{SO}_{2}, \mathrm{O}=-2$ each, $\mathrm{S}=+4$

Exception is $\mathrm{H}_{2} \mathrm{O}_{2}$ where $\mathrm{H}=+1$ and $\mathrm{O}=-1$ each
4. Hydrogen in a compound has an Oxidation Number of +1

Exception is when combined with a metal to form a Hydride $\mathrm{NaH} \mathrm{Na}=+1, \mathrm{H}=-1$
5. Halogens in a compound have an Oxidation Number of -1 .

Except when combined with a halogen above it in the PT. [Never saw one yet
thought!]
Or when combine with Oxygen.
6. The sum of the Oxidation Numbers in a compound is ZERO.

The sum of the Oxidation Numbers in a polyatomic ion equals it's charge.
Oxidation Numbers $>+6$ or <-4 are probably in error.
Ox Number
$\begin{aligned} & 2 \mathrm{Ca} \\ & \mathrm{O}\end{aligned} \underset{\mathrm{O}}{\mathrm{O}} \mathrm{O}_{2} \rightarrow \underset{+2}{2 \mathrm{CaO}} \quad \begin{aligned} & \text { Calcium is Oxidized } \\ & \text { Oxygen is Reduced }\end{aligned}$
Calcium goes from an Oxidation Number of o to +2
Oxygen goes from an Oxidation Number of o to -2
Problem: Determine the Oxidation Number of Chlorine in:
A. Perchloric Acid HClO_{4}
$\mathrm{H}=+1, \mathrm{O}=4^{*}-2$
$\mathrm{Cl}=+7$
B. Chlorate Ion $\mathrm{ClO}_{3}{ }^{-}$
$\mathrm{O}=3^{*}-2$, Net Charge $=-1$
$\mathrm{Cl}=+5$

Half Reactions is one of the two parts of a Redox Reaction.
One part has loss of e- or gain of oxidation number, one gain of e- or decrease of oxidation number.
An Iron nail in Copper (II) Sulfate: $\mathrm{Fe}+\mathrm{CuSO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Cu}$
The Net Ionic is $\mathrm{Fe}+\mathrm{Cu}^{+2} \rightarrow \mathrm{Fe}^{+2}+\mathrm{Cu}$
OXIDATION $\mathrm{Fe}^{\mathrm{o}} \rightarrow \mathrm{Fe}^{+2}+2 \mathrm{e}^{-}$electrons
lost by Fe
REDUCTION $\mathrm{Cu}^{+2}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}^{\circ} \quad$ gained by Cu
Oxidation is a LOSS OF ELECTRONS. Reduction is a GAIN OF ELECTRONS
Oxidation Agent - a compound that oxidizes another compound
Reducing Agent - a compound that reduces another compound
$\mid<-\quad$ Oxidation $\quad->\mid$
George W.J. Kenney, Jr.
Page 16 of 18

Chapter 3, 8-Sept-12

$$
\mathrm{Fe}+\underset{\mid<-}{\mathrm{Cu}^{+2}} \underset{\text { Reduction }}{\rightarrow} \mathrm{Fe}^{+2}+\quad \underset{->\mid}{\mathrm{Cu}}
$$

Common Oxidation - Reduction Reactions

1. Combination
2. Decomposition
3. Displacement
4. Combustion
5. Combination Reaction is one in which two substances combine to form a third compound

$$
\begin{array}{lll}
2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl} & \text { Sodium and Chlorine } \\
2 \mathrm{Sb}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{SbCl}_{3} & \text { Antimony and Chlorine } \\
\mathrm{CaO}+\mathrm{SO}_{2} \rightarrow \mathrm{CaSO}_{3} & \begin{array}{l}
\text { There is no change in Oxidation Numbers } \\
\text { But this is still a Combination Reaction }
\end{array}
\end{array}
$$

2. Decomposition Reaction is one in which a single compound reacts to give two or more substances. Check Oxidation Number to see if they are Redox - some are not!

$$
\begin{array}{lll}
2 \mathrm{HgO} & \begin{array}{l}
\text { Heat } \\
2
\end{array} 2 \mathrm{Hg}+\mathrm{O}_{2} & \text { Heat Mercury (II) Oxide } \\
2 \mathrm{KClO}_{3} \xrightarrow{\text { Heat }} 2 \mathrm{KCl}+3 \mathrm{O}_{2} & \begin{array}{l}
\text { Heat Potassium Chlorate with } \mathrm{MnO} 2 \mathrm{Cat} \\
\mathrm{MnO}_{2} \mathrm{Cat}
\end{array} \\
\mathrm{CaCO}_{3} \xrightarrow{\text { Reat }} \mathrm{CaO}+\mathrm{CO}_{2} & \text { Head Calcium Carbonate not Redox }
\end{array}
$$

3. Displacement or Single Displacement is were an Element reacts with Compound, displacing an element from the compound. If an element is involved, the reaction is a Redox.

$$
\begin{array}{llll}
\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag} & \\
\mathrm{Cu}+2 \mathrm{Ag}+ & \rightarrow \mathrm{Cu}^{+2}+2 \mathrm{Ag} & \text { Net Ionic shows electron transfer } \\
\mathrm{Zn}+2 \mathrm{HCl} & \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2} & \text { Zinc and HCl yields Hyrdorgen Gas } \\
\mathrm{Zn}+2 \mathrm{H}^{+} & \rightarrow \mathrm{Zn}^{+2}+\mathrm{H}_{2} & \text { Net Ionic }
\end{array}
$$

Activity Series of the Elements [Table 4.6]

$\mathrm{Li}>\mathrm{K}>\mathrm{Ba}>\mathrm{Ca}>\mathrm{Na}>\quad$ Reacts violently with water to give H_{2}
$\mathrm{Mg}>\mathrm{Al}>\mathrm{Zn}>\mathrm{Cr}>\mathrm{Fe}>\mathrm{Cd}>\quad$ Reacts slowly with water to give H_{2} $\mathrm{Co}>\mathrm{Ni}>\mathrm{Sn}>\mathrm{Pb}$

$$
\mathrm{H} 2>\mathrm{Cu}>\mathrm{Hg}>\mathrm{Ag}>\mathrm{Au} \quad \text { Do not react with acids to give } \mathrm{H}_{2}
$$

4. Combustion Reactions a substance reacts with oxygen usually with the rapid release of heat to produce a flame. Butane

$$
\begin{aligned}
& 2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}+\text { Heat } \\
& 4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3} \quad \text { Metals burn in air, iron rusts in oxygen }
\end{aligned}
$$

Balancing Redox Equations

$$
1^{\text {st }} \text { Glance } \quad \mathrm{Zn}+\mathrm{Ag}+\rightarrow \mathrm{Zn}^{+2}+\mathrm{Ag}
$$

But the charge is not balanced. Do it by Half Reactions

ON	O
	Zn
	$+\stackrel{+1}{\mathrm{Ag}^{+}} \rightarrow$+2 $\mathrm{Zn}+2$$+$O Ag

| Zn | |
| :--- | :--- | :--- |
| $\mathrm{Ag}^{+}+1 \mathrm{e}^{-} \xrightarrow{\rightarrow} \mathrm{Zn}^{+2}+2 \mathrm{e}^{-}$ | Oxidation
 Reduction |

Balance the electrons

| Zn | $\rightarrow \mathrm{Zn}^{+2} 2 \mathrm{e}^{-}$ | Oxidation |
| :--- | :--- | :--- | :--- |
| $2 \mathrm{Ag}^{+}+2 \mathrm{e}^{-} \xrightarrow{\rightarrow} 2 \mathrm{Ag}$ | | |
| $\mathbf{Z n}+2 \mathbf{A g}^{+} \rightarrow \mathbf{2 ~ A g}+\mathbf{Z n}^{+2}$ | Reduction | |
| BALANCE ELECTRONS | | |

O
Mg
O
N 2 $\rightarrow \begin{aligned} & +2-3 \\ & \mathrm{Mg}_{3} \mathrm{~N}_{2}\end{aligned} \quad$ Magnesium metal and Nitrogen Gas react
$\mathrm{Mg} \quad \rightarrow \quad \mathrm{Mg}^{+2}+2 \mathrm{e}^{-} \quad$ Oxidation - Need 3 of these
$\mathrm{N}_{2}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{~N}^{-3}$ Reduction
$3 \mathrm{Mg}+\mathrm{N}_{2} \rightarrow 3 \mathrm{Mg}^{+2}+2 \mathrm{~N}^{-3}\left[+/-6 \mathrm{e}^{-}\right]$BALANCE

ELECTRONS

